1. (a) सिद्ध कीजिए कि बोर हाइड्रोजन परमाणु चिरप्रतिष्टित (क्लासिकी) अवस्था के निकट पहुँचता है, जब n बहुत ज्यादा हो जाय और लघु कान्टम झंप अंतर्निहित हों।
Prove that Bohr hydrogen atom approaches classical conditions, when n becomes very large and small quantum jumps are involved.
(b) तरंग फलन $\psi(x, t)=\left[A e^{i p x / \hbar}+B e^{-i p x / \hbar}\right] e^{-i p^{2} t / 2 m t}$ के लिए प्रायिकता धारा घनत्व ज्ञात कीजिए। परिणाम की भौतिक व्याख्या कीजिए।
Find the probability current density for the wave function

$$
\psi(x, t)=\left[A e^{i p x / \hbar}+B e^{-i p x / \hbar}\right] e^{-i p^{2} t / 2 m \hbar}
$$

Interpret the result physically.
(c) एक नीले रंग का लैम्प $4500 \AA$ के औसत तरंगदैर्घ्य के प्रकाश को उत्सर्जित करता है। लैम्प का अनुमतांक (रेटिंग) 150 W है तथा उसकी 8% ऊर्जा प्रकाश के रूप में प्रकट होती है। लैम्प के द्वारा कितने फोटॉन प्रति सेकन्ड उत्सर्जित किए जाते हैं ?
A blue lamp emits light of mean wavelength of $4500 \AA$. The rating of the lamp is 150 W and its 8% of the energy appears as light. How many photons are emitted per second by the lamp?
(d) किसी साइक्लोट्रॉन में एक ड्यूटरॉन के पथ की अधिकतम त्रिज्या, चुम्बकीय क्षेत्र से बाहर विक्षेपित होने से पूर्व, 20 cm हो सकती है।
(i) इस त्रिज्या पर ड्यूटरॉन के वेग की गणना कीजिए।
(ii) ड्यूटॉॉन की ऊर्जा MeV में कितनी है?

दिया गया है, चुम्बकीय क्षेत्र $=1500$ गाउस और ड्यूटरॉन का द्रव्यमान $=3.34 \times 10^{-27} \mathrm{~kg}$.
In a certain cyclotron, the maximum radius that the path of a deuteron may have before it is deflected out of the magnetic field is 20 cm .
(i) Calculate the velocity of the deuteron at this radius.
(ii) What is the energy of deuteron' in MeV?

Given, magnetic field $=1500$ gauss and mass of deuteron $=3.34 \times 10^{-27} \mathrm{~kg}$.
(e) एक डायमन्ड क्रिस्टल का जालक प्राचल (पैरामीटर) एवं परमाणु द्रव्यमान क्रमशः $3.57 \AA$ और 12 है। इस क्रिस्टल के घनत्व की गणना कीजिए। दिया गया है, आवोगाद्रो संख्या, $N=6.023 \times 10^{26}(\mathrm{~kg} \mathrm{~mol})^{-1}$. The lattice parameter and the atomic mass of a diamond crystal are $3.57 \AA$ and 12, respectively. Calculate the density of the crystal. Given, Avogadro's
number, $N=6.023 \times 10^{26}\left(\mathrm{~kg} \mathrm{~mol}^{-1}\right.$.
2. (a) एक कण को तरंग फलन $\psi(x)=\left(\frac{\pi}{4}\right)^{-1 / 4} e^{-a x^{2} / 2}$ के द्वारा निरूपित किया जाता है। कण के लिए Δx और Δp का परिकलन कीजिए तथा अनिश्चितता सम्बन्ध $\Delta x \Delta p=\frac{\hbar}{2}$ को सत्यापित कीजिए। A particle is described by the wave function $\psi(x)=\left(\frac{\pi}{4}\right)^{-1 / 4} e^{-a x^{2} / 2}$. Calculate Δx and Δp for the particle, and verify the uncertainty relation $\Delta x \Delta p=\frac{\hbar}{2}$.
(b) गुणधर्म $A^{3}=1$ के एक हर्मिटी संकारक A को लीजिए। दर्शाइए कि $A=1$. Consider a Hermitian operator A with property $A^{3}=1$. Show that $A=1$.
(c) नाभिकीय चुम्बकीय अनुनाद (एन० एम० आर०) के सिद्धान्त को लिखिए। नाभिकीय चुम्बकीय अनुनाद के डिज़ाइन एवं कार्यप्रणाली को समझाइए तथा इसके महत्त्वपूर्ण उपयोगों के बारे में लिखिए।
Write the principle of nuclear magnetic resonance (NMR). Explain the design and working of NMR, and write its important applications.
3. (a) कैडमियम की $6438 \AA$ की लाल रेखा के सरल ज़ेमानी विपाटन को ज्ञात कीजिए, जबकि परमाणुओं को 0.009 T के चुम्बकीय क्षेत्र में रखा गया है।

Determine the normal Zeeman splitting of the cadmium red line of $6438 \AA$, when the atoms are placed in a magnetic field of 0.009 T .
(b) समझाइए कि कैसे स्टर्न-गर्लैक प्रयोग का उपयोग करते हुए परमाणु के चुम्बकीय आघूर्ण, कोणीय संवेग के आकाशी कान्टमीकरण और इलेक्ट्रॉन के प्रचक्रण का आकलन किया जा सकता है।
Explain how the magnetic moments of atoms, the space quantization of angular momentum and the spin of electron are measured using Stern-Gerlach experiment.
(c) यदि किसी इलेक्ट्रॉन के प्रचक्रण का z-अवयव $+\frac{\hbar}{2}$ हो, तो इसकी क्या प्रायिकता है कि इसका किसी z^{\prime} दिशा में (जो कि z-अक्ष से θ कोण बनाती है) अवयव $\frac{\hbar}{2}$ या $-\frac{\hbar}{2}$ है? z^{\prime} दिशा में प्रचक्रण का औसत मान क्या है?
If the z-component of an electron spin is $+\frac{\hbar}{2}$, what is the probability that its component along a direction z^{\prime} (forming an angle θ with z-axis) is $\frac{\hbar}{2}$ or $-\frac{\hbar}{2}$? What is the average value of spin along z^{\prime} ?
4. (a) ड्यूटॉॉन के ${ }^{3} \mathrm{~S}_{1}$ अवस्था का चुम्बकीय द्विध्रुव आघूर्ण, नाभिकीय मैमेटॉन, μ_{N}, के पद में ज्ञात कीजिए। दिया गया है, $\mu_{p}=2.792847 \mu_{N}$ और $\mu_{n}=-1.913042 \mu_{N}$.
Calculate in terms of the nuclear magneton, μ_{N}, the magnetic dipole moment of ${ }^{3} S_{1}$ state of deuteron. Given, $\mu_{p}=2.792847 \mu_{N}$ and $\mu_{n}=-1.913042 \mu_{N}$.

[P.T.O.
(b) नाभिकों के आधारभूत दुर्बल अन्योन्यक्रिया प्रक्रमों को लिखिए। (i) न्यूट्रॉन और (ii) प्रोटॉन के बीटा क्षर्यों को भी स्पष्ट कीजिए।
Write down the basic weak interaction processes in the nuclei. Also illustrate the beta decays of (i) neutron and (ii) proton.
(c) एक चालक की द्वि-तरल (सामान्य और अतिचालक) अवधारणा तथा मैक्सवेल समीकरणों का उपयोग करते हुए अतिचालकता के दो लंडन समीकरणों की व्युत्पत्ति कीजिए।
Using the two-fluid model of a conductor (normal and superconducting) and the Maxwell's equations, derive the two London equations of superconductivity.

खण्ड—B / SECTION-B

5. (a) एक सोपान विभव के दोनों तरफ एक कण के लिए तरंग फलनों को, $E>V_{0}$ के लिए, लिखिए :

$$
V(x)=\left\{\begin{array}{cc}
V_{0}, & x>0 \\
0, & x<0
\end{array}\right.
$$

 the Maxwell's equations, derive the two London equationsof
5. (a) एक सोन

परिणामों की भौतिक व्याख्या कीजिए।
Write the wave functions for a particle on both sides of a step potential, for $E>V_{0}$:

$$
V(x)=\left\{\begin{array}{cc}
V_{0}, & x>0 \\
0, & x<0
\end{array}\right.
$$

Interpret the results physically.
(b) मॉसबौर प्रभाव की व्याख्या कीजिए।

Explain the Mössbauer effect.
(c) पृथ्वी के ऊपरी पटल में पाए गए प्राकृतिक यूरेनियम में दो समस्थानिक ${ }_{92}^{235} \mathrm{U}$ और ${ }_{92}^{238} \mathrm{U}, 7.3 \times 10^{-3}$ तथा 1 के परमाणुक अनुपात में हैं। यह मानते हुए कि दोरों समस्थानिकों के निर्माण के समय दोनों समस्थानिक समान मात्रा में उत्पन्न हुए, उनके निर्माण के समय का आकलन कीजिए। दिया गया है कि दोनो समस्थानिकों की औसत आयु क्रमशः 1.03×10^{9} वर्ष तथा 6.49×10^{9} वर्ष है।
Natural uranium found in the earth's crust contains the isotopes ${ }_{92}^{235} \mathrm{U}$ and ${ }_{92}^{238} \mathrm{U}$ in the atomic ratio 7.3×10^{-3} to 1 . Assuming that at the time of formation these two isotopes were produced equally, estimate the time since formation.

Given that the mean lives of both the isotopes are 1.03×10^{9} years and 6.49×10^{9} years, respectively.
(d) एक लगभग शुद्ध मोटी ऐल्युमिनियम चादर (शीट) में 0.19 परमाणुक प्रतिशत ताम्र (कॉपर) शीट की सतह पर तथा 0.18 परमाणुक प्रतिशत ताम्र सतह से 1.2 mm की गहराई पर है। $550^{\circ} \mathrm{C}$ पर सतह से ताप्र परमाणुओं के फ्लक्स का परिकलन कीजिए, यदि इस तापमान पर ताम्र का ऐल्युमिनियम में विसरण गुणांक $5.25 \times 10^{-13} \mathrm{~m}^{2} \mathrm{~s}^{-1}$ है। दिया गया है, Al FCC जालक पैरामीटर, $a=4.05 \AA$.
In an almost pure thick aluminium sheet, there are 0.19 atomic percent of copper at the surface and 0.18 atomic percent at a depth of 1.2 mm from the surface. Calculate the flux of the copper atoms from the surface at $550^{\circ} \mathrm{C}$, if the diffusion coefficient of copper in aluminium at this temperature is $5.25 \times 10^{-13} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. Given, AI FCC with lattice parameter, $a=4.05 \AA$.
(e) मुक्त इलेक्ट्रॉन मॉडल को मानते हुए सोडियम के हॉल गुणांक का परिकलन कीजिए। सोडियम की संरचना BCC है तथा घन की एक भुजा $4.28 \AA$ है।
Calculate the Hall coefficient of sodium based on the free electron model. Sodium has BCC structure and the side of the cube is $4 \cdot 28 \AA$.
6. (a) नाभिकीय बंधन ऊर्जा के लिए वाइज़ेकर द्रव्यमान सूत्र को लिखिए। सूत्र में प्रयुक्त प्रत्येक पद का संक्षेप में औचित्य दीजिए।
Write down the Weizsäcker mass formula for the nuclear binding energy. Give short justification for each term of the formula.
(b) नैज अर्धचालक क्या है? नैज सिलिकॉन का बैन्ड अन्तराल $1 \cdot 1 \mathrm{eV}$ है फिर भी $T=300 \mathrm{~K}$ पर इसकी चालकता शून्य नहीं है। समझाइए। उपयुक्त व्यंजक की सहायता से नैज अर्धचालक में फर्मी स्तर की स्थिति पर टिप्पणी कीजिए।
What is an intrinsic semiconductor? Intrinsic silicon has a band gap of 1.1 eV and yet at $T=300 \mathrm{~K}$, the conductivity is non-zero. Explain. Comment, with the help of relevant expression, on the position of the Fermi level of an intrinsic semiconductor.
(c) एक प्रवर्धक की परिकल्पना कीजिए, जिसकी खुला पाश (पुनर्भरण के बिना) लब्धि (गेन) A है तथा पुनर्भरण गुणक (फीडबैक फैक्टर) β है। इसकी पुनर्भरण लब्धि A_{f} के लिए व्यंजक प्राप्त कीजिए। पुनर्भरण प्रवर्धक के लिए उस शर्त की व्युत्पत्ति कीजिए, जिसके अन्तर्गत यह एक दोलक की तरह कार्य करता है। A में परिवर्तन के साथ A_{f} में होने वाले परिवर्तन पर टिप्पणी कीजिए।
Consider an amplifier with an open-loop (no feedback) gain of A and a feedback factor β. Derive the expression for the gain with feedback, A_{f}. Derive the condition for the amplifier with feedback to act as an oscillator. Comment on the change in A_{f} with a change in A.
7. (a) अनिश्चितता के सिद्धान्त $\Delta x \Delta p \geq \frac{\hbar}{2}$ का उपयोग करते हुए एक आवर्ती दोलक के निम्नतम ऊर्जा स्तर का आकलन कीजिए।
Using the uncertainty principle $\Delta x \Delta p \geq \frac{\hbar}{2}$, estimate the ground state energy of a harmonic oscillator.

$$
11^{4}, 1.01-11
$$

25 2 a

$$
1 t^{2}, 1,1=0
$$

then whow that $\left(1^{\circ} \cdot i^{\prime}\right)=141^{\prime}$

$$
U(N)=\frac{A}{R^{2}},{ }_{R^{10}}^{11}
$$

 जै क च चेक कोजिए।
The pwential energy of a diatomic molecule in terms of the interatomic spacing x is given by

$$
U(R)=\frac{-A}{R^{2}}+\frac{B}{R^{10}}
$$

where $A=144 \times 10^{-39} \mathrm{Jm}^{2}$ and $B=2.19 \times 10^{-115} \mathrm{~J} \mathrm{~m}^{10}$. Calculate the equitionium spacing, R_{e} and the dissociation energy. 20
A. 12 हाइड़ोंक चनापु की ग्रथन बोर कक्षा में इलेक्ट्रॉन की आवृत्ति की गणना कीजिए।

Caiculane the frequency of the electron in the first Bohr orbit of hydrogen atom 15

What is Zeeman effect? Explain Zeeman effect on the basis of classical electron theory.

 उद्ये कfom

6) Las the main reactions in the pp chain leading from hudrusen ow hethum Gantex ectias nutengynthesis. Also mention the not oftert of the 10wterme
(ay he in twe separate columne, the quantiles that are consencet ant thet criserved in the weak interaction of particles

