MECHANICAL ENGINEERING

Paper - II

Time Allowed : Three Hours

Maximum Marks : 200

Question Paper Specific Instructions

Please read each of the following instructions carefully before attempting questions :

There are EIGHT questions in all, out of which $\boldsymbol{F I V E}$ are to be attempted.
Questions no. $\mathbf{1}$ and $\mathbf{5}$ are compulsory. Out of the remaining SIX questions, THREE are to be attempted selecting at least ONE question from each of the two Sections A and B.
Attempts of questions shall be counted in sequential order. Unless struck off, attempt of a question shall be counted even if attempted partly. Any page or portion of the page left blank in the Question-cum-Answer Booklet must be clearly struck off.

All questions carry equal marks. The number of marks carried by a question/part is indicated against it.

Answers must be written in ENGLISH only.
Unless otherwise mentioned, symbols and notations have their usual standard meanings.
Assume suitable data, if necessary and indicate the same clearly.
Neat sketches may be drawn, wherever required.
Newton may be converted to kgf using the equality 1 kilonewton (1 kN) ---- 100 kgf , if found necessary.

All answers should be in SI units.
Take : $1 \mathrm{kcal}=4 \cdot 187 \mathrm{~kJ}$ and $1 \mathrm{~kg} / \mathrm{cm}^{2}-0.98 \mathrm{bar}$
1 bar $=10^{5}$ pascals
Universal gas constant $=8314 \cdot 6 \mathrm{~J} / \mathrm{kmol}-\mathrm{K}$
Psychrometric chart is enclosed.

SECTION A

Q1. (a) Derive a general expression for the change in entropy of a real gas obeying the van der Waals equation.
(b) The boiling point of water at the top of a hill is found to be $90^{\circ} \mathrm{C}$, whereas it boils at $99 \cdot 6^{\circ} \mathrm{C}$ with the latent heat of evaporation of $2256.94 \mathrm{~kJ} / \mathrm{kg}$ at the foot of the hill (where the pressure is 101.325 kPa). Assuming that the atmosphere is locally isothermal at 300 K (i.e. $p v=p_{o} v_{o}$ is valid), estimate the height of the hill.
(c) A house, that is losing heat at a rate of $50,000 \mathrm{~kJ} / \mathrm{h}$ when the outside temperature drops to $4^{\circ} \mathrm{C}$, is to be heated by electric resistance heaters. If the house is to be maintained at $25^{\circ} \mathrm{C}$ at all times, determine the reversible work input for this process and the irreversibility.
(d) Determine the heat transfer rate from a rectangular fin of length 20 cm , width 40 cm and thickness 2 cm . The tip of the fin is not insulated and the fin has a thermal conductivity of $150 \mathrm{~W} / \mathrm{mK}$. The base temperature is $100^{\circ} \mathrm{C}$ and the fluid is at $20^{\circ} \mathrm{C}$. The heat transfer coefficient between the fin and the fluid is $30 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.
(e) What purposes does an expansion device serve in a vapour compression refrigeration system ? Explain how a simple capillary tube can serve these purposes.

Q2. (a) Prove that:

$$
\begin{aligned}
& \left(\frac{\partial \mathrm{P}}{\partial \mathrm{~T}}\right)_{\mathrm{s}}=\frac{\mathrm{k}}{\mathrm{k}-1}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{~T}}\right)_{\mathrm{v}} \text { where } \mathrm{k}=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}} . \\
& {\left[\text { Hint: } \mathrm{C}_{\mathrm{p}}-\mathrm{C}_{\mathrm{v}}=-\mathrm{T}\left(\frac{\partial \mathrm{~V}}{\partial \mathrm{~T}}\right)_{\mathrm{P}}^{2}\left(\frac{\partial \mathrm{P}}{\partial \mathrm{~V}}\right)_{\mathrm{T}}\right]}
\end{aligned}
$$

(b) Three thin walled infinitely long hollow cylinders of radii $5 \mathrm{~cm}, 10 \mathrm{~cm}$ and 15 cm are arranged coaxially. The temperatures of the innermost and outermost cylinders are respectively 1000 K and 300 K . Calculate the steady state temperature of the middle cylinder surface and the heat flow per m^{2} area of the innermost cylinder. Assume emissivity of all the cylinders to be 0.5 and vacuum in the spaces between the cylinders. Take $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$.
(c) Explain, with the help of T-s diagram, that for atmospheric moist air

$$
\begin{aligned}
& T_{\text {dry bulb }}>T_{\text {wet bulb }}>T_{\text {dew point, }} \text {, in unsaturated condition, and } \\
& T_{\text {dry bulb }}=T_{\text {wet bulb }}=T_{\text {dew point, }} \text { in saturated condition. }
\end{aligned}
$$

Q3. (a) A refrigeration plant operates on Reversed Carnot cycle. The saturation temperatures in the condenser and evaporator are $40^{\circ} \mathrm{C}$ and $-5^{\circ} \mathrm{C}$ respectively. The volumetric efficiencies of the compressor and expander are 100 percent each.
Calculate (i) the refrigeration effect per kg of refrigerant, (ii) the coefficient of performance, (iii) the compressor displacement per kW of refrigeration effect, and (iv) the net work input per kg of refrigerant.
Also, calculate the corresponding for a simple vapour compression refrigeration cycle. Assume no superheating either at the inlet or exit of the compressor, and no subcooling.
Show the cycles on T-s diagram.
Explain, why in practice a throttle valve is used in vapour compression refrigeration rather than an expander cylinder.
The properties of the refrigerant are as follows :
(The specific volume of the saturated liquid is negligible compared to vapour).

		Enthalpy, kJ/kg		Entropy, $\mathrm{kJ} / \mathrm{kg} \mathrm{K}$		Specific Saturation Temperature ${ }^{\circ} \mathrm{C}$
Saturation Pressure bar	h_{f}	h_{g}	s_{f}	s_{g}	Volume $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$ v_{g}	
40	$9 \cdot 6065$	$238 \cdot 535$	$367 \cdot 15$	$1 \cdot 1298$	$1 \cdot 5405$	$18 \cdot 17$
(-5)	$2 \cdot 6096$	$195 \cdot 395$	$349 \cdot 32$	$0 \cdot 9831$	$1 \cdot 5571$	$64 \cdot 963$

f and g refer to saturated liquid and saturated vapour respectively.
(b) A piston-cylinder device contains 0.8 kg of steam at $300^{\circ} \mathrm{C}$ and 1 MPa . Steam is cooled at constant pressure until one-half of the mass condenses.
(i) Show the process on a $\mathrm{T}-\mathrm{V}$ diagram.
(ii) Find the final temperature.
(iii) Determine the volume change.
(iv) Determine the heat transfer.

Given :
Tables

P (kPa)	$\mathrm{T}_{\text {sat }}$ $\left({ }^{\circ} \mathrm{C}\right)$	v_{f} $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$	v_{g} $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$	h_{f} $(\mathrm{kJ} / \mathrm{kg})$	h_{g} $(\mathrm{kJ} / \mathrm{kg})$
$1 \cdot 000$	$6 \cdot 97$	$0 \cdot 00100$	$129 \cdot 19$	$29 \cdot 303$	$2513 \cdot 7$
$100 \cdot 0$	$99 \cdot 61$	$0 \cdot 00104$	$1 \cdot 6941$	$417 \cdot 51$	$2675 \cdot 0$
$1000 \cdot 0$	$179 \cdot 88$	$0 \cdot 001127$	$0 \cdot 19436$	$762 \cdot 51$	$2777 \cdot 1$

Property :

$$
\begin{aligned}
\mathrm{At} \mathrm{P} & =1 \cdot 00 \mathrm{MPa} \text { and } \mathrm{T}=300^{\circ} \mathrm{C} \\
\mathrm{~s} & =7 \cdot 1246 \mathrm{~kJ} / \mathrm{kg}-\mathrm{K} \\
\mathrm{v} & =0 \cdot 25799 \mathrm{~m}^{3} / \mathrm{kg} \\
\mathrm{~h} & =3051 \cdot 6 \mathrm{~kJ} / \mathrm{kg}
\end{aligned}
$$

(c) Water at $20^{\circ} \mathrm{C}$ flowing at the rate of $0.015 \mathrm{~kg} / \mathrm{s}$ enters a 25 mm inner diameter tube which is maintained at a temperature of $90^{\circ} \mathrm{C}$. Assuming hydrodynamically and thermally fully developed flow, determine the heat transfer coefficient and the tube length required to heat the water to $70^{\circ} \mathrm{C}$.
Given water properties at $20^{\circ} \mathrm{C} ; \rho=1000 \cdot 5 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{C}_{\mathrm{p}}=4181 \cdot 8 \mathrm{~J} / \mathrm{kg} \mathrm{K}$, Kinematic viscosity $=1.006 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.
Properties of water at $45^{\circ} \mathrm{C}$:
$\rho=992 \mathrm{~kg} / \mathrm{m}^{3}, \mathrm{C}_{\mathrm{p}}=4180 \mathrm{~J} / \mathrm{kg} \mathrm{K}, \mathrm{k}=0.638 \mathrm{~W} / \mathrm{mK}$,
Kinematic viscosity $=0.613 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.
The average Nusselt number for the tube is $3 \cdot 657$.
Q4. (a) In a parallel flow heat exchanger, engine oil enters a heat exchanger at $150^{\circ} \mathrm{C}$ and leaves at $80^{\circ} \mathrm{C}$. The cooling water enters at $30^{\circ} \mathrm{C}$ and leaves at $65^{\circ} \mathrm{C}$. If the fluid flow rates and the inlet conditions are unchanged, find exit temperature of each stream in counterflow exchanger.
(b) A building has the following calculated cooling loads :

RSH gain $=310 \mathrm{~kW}$, RLH gain $=100 \mathrm{~kW}$.
The building's inside space is maintained at the following conditions of Room DBT $=25^{\circ} \mathrm{C}$ and Room $\mathrm{RH}=50 \%$. The outdoor air is at $28^{\circ} \mathrm{C}$ DBT and $50 \% \mathrm{RH}$. And 10% by mass of air supplied to the building is outdoor air. If the air supplied to the space is not to be at a temperature lower than $18^{\circ} \mathrm{C}$, find
(i) minimum amount of air supplied to the space in $\mathrm{m}^{3} / \mathrm{s}$,
(ii) volume flow rate of air entering the coil,
(iii) capacity of the cooling coil in TR, and
(iv) ADP and bypass factor of the cooling coil.

Also, draw the layout sketch.
(Psychrometric chart is attached)

(c) In the early development of steam power plants, approximately 1.12 kg of coal is required per kilowatt hour. Assume that the mean temperature at which heat was supplied is $175^{\circ} \mathrm{C}$ and heat was rejected is $100^{\circ} \mathrm{C}$ at that time. Presently, assume that heat is supplied at a mean temperature of $380^{\circ} \mathrm{C}$ and rejected at $32^{\circ} \mathrm{C}$. The ratio of the actual thermal efficiency to that of the Carnot cycle today is about 1.25 times that of earlier years. Assuming the same heating value for coal in both cases, calculate the amount of coal now required per kilowatt hour.

SECTION B

Q5. (a) Compare the cooling effect of fuel evaporation on charge temperature in a turbocharged spark ignition engine for the following two cases :
(i) The carburettor is placed before the compressor
(ii) The carburettor is placed after the compressor

The specific heat capacity of the air and the latent heat of evaporation of the fuel are both constant. For the air/fuel ratio of $12.5: 1$, the evaporation of the fuel causes a 25 K drop in mixture temperature. The compressor efficiency is 70% for the pressure ratio of 1.5 , and the ambient temperature is $15^{\circ} \mathrm{C}$. Assume the following values :
for air, $\mathrm{C}_{\mathrm{p}}=1.01 \mathrm{~kJ} / \mathrm{kgK}, \gamma=1.4$,
for air/fuel mixture, $\mathrm{C}_{\mathrm{p}}=1.05 \mathrm{~kJ} / \mathrm{kgK}, \gamma=1.34$.
Finally, compare the compressor work in both cases.
(b) A Ford 2-stroke engine has a swept volume of $1 \cdot 2$ litres. At a speed of 5500 rpm , the full load torque is 108 Nm and the brake specific fuel consumption is $294 \mathrm{~g} / \mathrm{kWh}$. Calculate the brake mean effective pressure, and the brake thermal efficiency (assume a calorific value of $43 \mathrm{MJ} / \mathrm{kg}$). Give at least 5 reasons why the brake thermal efficiency is lower than the value predicted by the Otto cycles analysis.
(c) What is meant by "work done factor" in the axial flow compressors ? Explain how the work done factor value varies with the number of stages. Why is the work done factor not considered in centrifugal compressors?
(d) What is 'slip factor' for a centrifugal compressor stage? What is its effect on the flow and the pressure ratio in the stage ?
(e) Water in a large lake is to be used to generate electricity by the installation of a hydraulic turbine-generator located, where the depth of water is 50 m (see Figure). Water is to be supplied at the rate of $5000 \mathrm{~kg} / \mathrm{s}$. The electric power generated is 1862 kW and the generator efficiency is 95%. Determine (i) the overall efficiency of the turbine generator, (ii) the mechanical efficiency of the turbine, and (iii) the shaft power supplied by the turbine to the generator.

Density of water is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and gravitational acceleration is $9.81 \mathrm{~m} / \mathrm{s}^{2}$.

Q6. (a) Reciprocating internal combustion engines have been fitted with ingenious mechanisms that allow the expansion ratio $\left(r_{e}\right)$ to be greater than the compression ratio $\left(r_{c}\right)$. When such a system is modelled by an ideal gas cycle there is
(i) heat addition at constant volume,
(ii) some heat rejection at constant volume,
(iii) and some heat rejection at constant pressure, to complete the cycle.

The process is shown in the following figure on a T-s plane :

Depict the processes on a P-V plane. The constant-volume temperature rise $(2 \rightarrow 3)$ is $\theta \mathrm{T}_{1}$. Derive an expression for the cycle efficiency in terms of $\mathrm{r}_{\mathrm{e}}, \mathrm{r}_{\mathrm{c}}$ and θ. State any assumptions.
(b) In an ideal gas turbine cycle with reheat, air at state $\left(\mathrm{P}_{1}, \mathrm{~T}_{1}\right)$ is compressed to $\left(\mathrm{rp}_{1}\right)_{\mathrm{x}}$ in the compressor and heated to $\mathrm{T}_{3 \mathrm{x}}$ in the combustion chamber. The air is then expanded in two stages, each turbine having the same pressure ratio, with reheat to T_{3} between the stages. Assuming the working fluid to be a perfect gas with constant specific heats, and that the compression and expansion are isentropic, show that the specific work output will be a maximum when 'r', the compressor pressure ratio is given by

$$
\mathrm{r}^{(\gamma-1) / \gamma}=\left(\frac{\mathrm{T}_{3}}{\mathrm{~T}_{1}}\right)^{2 / 3}
$$

where γ is the ratio of specific heats, $\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{v}}$. Draw the schematic arrangement of the cycle and the corresponding $\mathrm{T}-\mathrm{s}$ diagram also.
(c) $\mathrm{C}_{12} \mathrm{H}_{26}$ is burned at constant volume with no excess air. The initial temperature is $30^{\circ} \mathrm{C}$. Assuming complete combustion, determine the theoretical maximum temperature when there is no dissociation. Use the following enthalpy values ($\mathrm{J} / \mathrm{mole}$) of different substances for the calculations :

$\mathrm{C}_{12} \mathrm{H}_{26}$	$75,79,383$
CO_{2}	$1,46,203$
$\mathrm{H}_{2} \mathrm{O}$	$1,18,329$
$\mathrm{~N}_{2}$	88,122

Q7. (a) In a power plant employing Rankine cycle with reheat, superheated steam at 150 bar and $500^{\circ} \mathrm{C}(\mathrm{h}=3310.6 \mathrm{~kJ} / \mathrm{kg} ; \mathrm{s}=6.3487 \mathrm{~kJ} / \mathrm{kg} \mathrm{K})$ enters the first stage of the turbine. The condenser is maintained at $0.1 \mathrm{bar}\left(\mathrm{v}_{\mathrm{f}}=0.001 \mathrm{~m}^{3} / \mathrm{kg}, \mathrm{h}_{\mathrm{f}}=191.83 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \mathrm{h}_{\mathrm{g}}=2584.8 \mathrm{~kJ} / \mathrm{kg}\right.$, $\mathrm{s}_{\mathrm{f}}=0.6493 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}, \mathrm{s}_{\mathrm{g}}=8.1511 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$). The exit steam from the first stage of turbine is reheated to $500^{\circ} \mathrm{C}$ before it is fed to the second stage of the turbine. Calculate the thermal efficiency of the power plant if steam expands to
(i) 90 bar in the first stage of the turbine.
(ii) 60 bar in the first stage of the turbine.

From the superheated steam tables at 90 bar

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}(\mathrm{kJ} / \mathrm{kg} \mathrm{K})$
400	$3125 \cdot 5$	$6 \cdot 3067$
500	$3389 \cdot 2$	$6 \cdot 6728$

From the superheated steam tables at 60 bar

$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{h}(\mathrm{kJ} / \mathrm{kg})$	$\mathrm{s}(\mathrm{kJ} / \mathrm{kg} \mathrm{K})$
300	$2885 \cdot 0$	6.0692
400	$3180 \cdot 1$	6.5462
500	$3422 \cdot 2$	6.8818

(b) A gas engine operating on methane $\left(\mathrm{CH}_{4}\right)$ at 1500 rpm , full throttle, generates the following emissions measured on a dry volumetric basis :

CO_{2}	$10 \cdot 4 \%$
CO	$1 \cdot 1 \%$
H_{2}	$0 \cdot 6 \%$
O_{2}	$0 \cdot 9 \%$
NO	600 ppm
HC	1100 ppm (as methane)

If the specific fuel consumption is $250 \mathrm{~g} / \mathrm{kWh}$, calculate the specific emissions of carbon monooxide, nitrogen oxide, and unburned hydrocarbons (that is $\mathrm{g} / \mathrm{kWh}$). Why is the specific basis more relevant than a percentage basis?
(c) A model of a torpedo is tested in a water filled towing tank at a velocity of $24.4 \mathrm{~m} / \mathrm{s}$. The prototype is expected to attain a velocity of $6.1 \mathrm{~m} / \mathrm{s}$ in water. What would be the model speed if tested in a wind tunnel filled with air at a pressure of 20.0 bar and constant temperature of $27^{\circ} \mathrm{C}$? The absolute viscosity of air may be assumed as $1.845 \times 10^{-5} \mathrm{~N} . \mathrm{s} / \mathrm{m}^{2}$, the molecular weight of air as $28.97 \mathrm{~kg} / \mathrm{kmol}$ and the universal gas constant as $8.315 \mathrm{~kJ} / \mathrm{kg}-\mathrm{mol} \mathrm{K}$. The kinematic viscosity of water may be taken as $1 \cdot 13 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$.

Q8. (a) Starting with the differential form of the conservation equations, show that the flow velocity increases with heat addition in subsonic Rayleigh flow, but decreases in supersonic Rayleigh flow. Also, draw the T-s diagram.
(b) At the mean diameter of a gas turbine stage, the blade velocity is $350 \mathrm{~m} / \mathrm{s}$. The blade angles at the inlet and exit are 20° and 54° (respectively) with respect to axial direction. The blades at this section are designed to have a degree of reaction of 50 percent. The mean diameter of the blades is 0.432 and the mean blade height is 0.07 m . Assuming that the whirl velocity varies inversely with respect to radius, estimate :
(i) the flow velocity,
(ii) the angles of blades at the tip and at the root, and
(iii) the degree of reaction at the tip and at the root of the blades.
(c) Briefly explain the stages of combustion in SI engines elaborating the flame front propagation.

