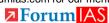
ForumIAS


Mains Marathon

1st Week August, 2025

HISTORY
ECONOMICS
POLITY
SCIENCE AND TECHNOLOGY
GEOGRAPHY AND ENVIRONMENT

INDEX

India needs a stronger framework for scientific talent across institutions and borders. Examine how institutional reforms and cross-disciplinary collaboration can strengthen India's scientific ecosystem and human capital
Witchcraft allegations, rooted in caste and patriarchy, are used to repress vulnerable women. Critically analyze the institutional failures and societal reforms needed to effectively combat this social injustice and ensure gender justice
India-UK FTA compromises raise concerns about digital sovereignty. Critically analyze the challenges trade agreements pose to a nation's digital autonomy, data governance, and strategic policy space4
Despite their economic value, blue carbon ecosystems like mangroves are absent from policy frameworks. Examine the governance reforms needed to integrate natural capital into development planning for sustainable coastal resource management
India's energy security demands fossil fuel conservation and regulatory reform. Examine how simplifying the energy regulatory system can be integrated with conservation efforts for a sustainable and secure energy future
India's digital ambitions must align with the 'right to repair' and frugal innovation. Examine how integrating these principles can ensure inclusive, sustainable, and equitable digital governance and development.
Despite distinct approaches, the philosophies of Tagore and Shankaracharya share a core message of unity. Examine how this synthesis of diverse paths is a salient feature of Indian intellectual and cultural tradition.
India's battery waste management lacks effective Extended Producer Responsibility (EPR) floor pricing. Examine how implementing fair EPR can bridge this gap, promoting circular economy principles and environmental sustainability.
India-US tech cooperation is shifting towards strategic dominance, not shared values. Critically analyze the challenges this techno-capitalism poses to India's technological sovereignty, economic autonomy, and innovation ecosystem
India's data-driven welfare state may compromise democratic norms and political accountability. Critically analyze the governance challenges and ethical dilemmas of using technology to deliver social welfare at scale
Biochar offers multi-faceted benefits for sustainable development and carbon sequestration. Critically analyze the challenges hindering its large-scale adoption and suggest policy measures to enable its market integration
China's actions against India are a calibrated strategy for its own internal interests. Examine the lessons India can learn to counter such challenges and safeguard its core strategic and economic interests
Stagnant wages and disproportionate growth challenge India's economic balance. Critically analyze how these economic trends impact social equity, household well-being, and the goal of an inclusive society.
The improving India-Philippines relations underscore shared strategic interests in the Indo-Pacific. Examine how this bilateral cooperation can enhance regional stability and India's Act East policy objectives

India needs a stronger framework for scientific talent across institutions and borders. Examine how institutional reforms and cross-disciplinary collaboration can strengthen India's scientific ecosystem and human capital.

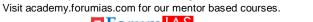
Introduction

In a rapidly evolving global knowledge economy, India's scientific aspirations hinge on building robust talent frameworks. Institutional reforms and interdisciplinary collaboration are essential to nurture innovation, attract talent, and ensure long-term leadership.

Current Status of India's Scientific Ecosystem

- 1. India ranks 40th in the Global Innovation Index (2023) and is the world's third-largest producer of scientific publications.
- 2. National Missions in AI, Quantum Tech, Space, and Biotech reflect strategic ambition.
- 3. Indian-origin scientists are well-regarded globally, but domestic retention and international recruitment remain weak.

Key Challenges in Scientific Talent Development


- 1. **Fragmented and siloed institutions**, often with rigid hierarchies.
- 2. **Limited global integration**: Few foreign researchers in Indian institutions.
- 3. **Inflexible recruitment**: Long delays, bureaucratic obstacles in hiring global faculty.
- 4. **Poor relocation support**: Housing, labs, schooling, and spousal employment issues.
- 5. Brain drain: Nearly 1.3 million Indian-origin professionals in STEM fields reside abroad (OECD 2022 data).

Institutional Reforms to Strengthen the Talent Framework

- Create Science Talent Zones: Designate hubs like Bengaluru, Pune, Hyderabad, Delhi as high-1. density research clusters. Allow fast-track hiring, joint labs, international Ph.D. co-supervision — modeled after NTU Singapore and KAIST Korea.
- Implement Global Tenure Tracks: Introduce internationally peer-reviewed tenure systems, open to Indian-origin and foreign scientists. Inspired by Tel Aviv University's diaspora recruitment model and Max Planck Institutes' performance-linked advancement.
- Establish Onboarding Ecosystems: Offer comprehensive relocation packages: housing, lab infrastructure, children's schooling, and spousal employment. Use outcome-based incentives to encourage institutes to improve support systems.
- Streamline Entry and Residency: Introduce a Global Science Residency Card for qualified researchers with a 5-year term and permanent residency option. Fast-track academic visas for mission-aligned institutions.

Fostering Cross-Disciplinary Collaboration

- Convergence Science Initiatives: Embed multi-disciplinary research teams within missions like 1. Al, climate, and biotech. Examples: Al for genomics, quantum sensors for disaster resilience, **neuroscience-AI integration** for cognitive tech.
- Establish Convergence Institutes: Modeled after MIT Media Lab or UK's Crick Institute, India can create **interdisciplinary hubs** integrating physical, life, and computational sciences.

3. **Interdisciplinary Grant Models:** Review and approve projects via **interdisciplinary peer panels**. Encourage co-investment with private players and shared IPR mechanisms.

Tapping the Scientific Diaspora

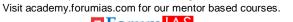
- 1. From Outreach to Integration: Transition from symbolic events to structured collaboration via cosupervised Ph.D.s, virtual sabbaticals, and shared facilities. Israel's alumni-driven reintegration models offer useful lessons.
- 2. Develop a Diaspora Science Portal: Facilitate project matching, funding access, and academic **networking** to reconnect with Indian-origin researchers.

Conclusion

India must transform its scientific ecosystem by removing institutional silos, attracting global talent, and embracing convergence science. A bold, inclusive framework will position India as a true scientific powerhouse by 2047.

Witchcraft allegations, rooted in caste and patriarchy, are used to repress vulnerable women. Critically analyze the institutional failures and societal reforms needed to effectively combat this social injustice and ensure gender justice.

Introduction


Witch-hunting in India persists as a brutal gendered violence, disproportionately targeting socially vulnerable women. It reflects institutional apathy and deep-rooted patriarchy entwined with caste, poverty, and superstitions in marginalized communities.

Witch-Hunting: A Tool of Patriarchal Control

- 1. **Over 2,500 women killed** on witchcraft charges since 2000, per NCRB data.
- 2. Victims are usually widowed, elderly, single, or socially isolated women, often from lower castes or tribal communities.
- 3. Witch-branding functions as **punishment for non-conformity**: women who assert independence, challenge inheritance, or defy social roles.
- 4. Similar to other gendered violence dowry deaths, honour killings, or domestic abuse it is a method to maintain patriarchal order.

Structural Roots and Institutional Failures

- State Failure and Neglect: Most cases occur in Jharkhand, Odisha, Chhattisgarh, Bihar. Assam states with high poverty, low literacy, and weak public health infrastructure. In absence of scientific explanations, disease, crop failure, or deaths are attributed to "witches". Reflects Auguste Comte's "theological stage", where mysticism dominates due to lack of rational knowledge or state services.
- Weak Legal Enforcement: States like Jharkhand, Bihar, Odisha have anti-witch hunting laws (e.g., Jharkhand Witchcraft Prevention Act, 2001), yet conviction rates remain dismal. Police often label cases as local issues or cultural traditions, and avoid filing FIRs or chargesheets. No national legislation, despite multiple Private Member Bills in Parliament.
- Patriarchy + Caste Domination: Accusations often driven by land disputes, property rights, or personal vendettas. Dominant castes or men use witch-branding to dispossess women, especially widows, of land. Tribal spiritual systems like **shamanism** are distorted for patriarchal and political gains.

4. Community Complicity: Witch-hunting is often **collective violence**, legitimized by fear, patriarchy, and groupthink. Entire villages participate in beatings, lynchings, or social boycott.

Reforms Needed: Legal, Social, Structural

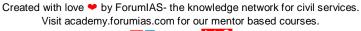
- 1. Legal and Administrative Reforms: Enact a comprehensive national anti-witch hunting law, with gender-specific provisions and faster trials. Sensitize police and judiciary to treat witch-branding as a serious form of gender-based violence. Mandatory FIR registration and survivor protection protocols.
- **2. Education and Public Health:** Promote **scientific temper** (Article 51A(h) of the Constitution) through **rural science campaigns** and school curricula. Improve **rural health systems** to reduce reliance on superstition during illness or death.
- 3. Empowering Women at the Grassroots: Train local women's collectives and panchayats to act as first responders and whistleblowers. Offer legal aid, rehabilitation and compensation to survivors and their families. Secure land and property rights of women through targeted land reforms.
- 4. Change the Narrative: Public campaigns must reframe witch-hunting from a "tribal tradition" to a criminal form of gender oppression. Promote media storytelling and survivor testimonies to challenge cultural legitimization of such violence.

Conclusion

Witchcraft accusations are violent expressions of caste-patriarchy and institutional indifference. A just society demands intersectional reforms, legal action, and community awakening to ensure safety, dignity, and justice for all women.

India-UK FTA compromises raise concerns about digital sovereignty. Critically analyze the challenges trade agreements pose to a nation's digital autonomy, data governance, and strategic policy space.

Introduction


In the era of data-driven economies, digital sovereignty is central to national security, innovation, and autonomy. However, recent trade agreements like the India–UK FTA raise critical questions about India's digital self-determination.

Understanding Digital Sovereignty

- 1. **Digital sovereignty** implies a nation's ability to regulate digital infrastructure, data, and technologies within its jurisdiction to safeguard **strategic**, **economic**, **and security interests**.
- 2. In the digital era, **data is the new oil**, and decisions on data storage, cross-border flows, and software regulation are no longer commercial issues alone but strategic national imperatives.

Key Digital Concessions in the India-UK FTA

1. **Source Code Disclosure Prohibition:** India agreed not to mandate **ex-ante disclosure of source code**, even for sensitive software. This limits regulators' ability to audit, secure, or demand algorithmic transparency — crucial for **AI governance**, **healthtech**, **defence software**, etc. Reverses India's long-standing WTO position and contrasts with **U.S.'s 2023 rollback** of similar provisions for security reasons.

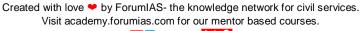
- 2. Open Government Data Access: Grants equal, non-discriminatory access to government-held datasets to U.K. parties. While non-binding ('best endeavour'), it devalues India's sovereign control over publicly collected datasets, critical for training indigenous AI systems. Compromises India's competitive edge in sectors like agri-tech, urban planning, and digital health.
- 3. **Future Data Flow Commitments:** While India resisted immediate concessions on **data localisation** and **free flow of data**, it committed to revisiting these under future trade consultations. This opens up backdoor vulnerabilities and pressures in multilateral forums, possibly weakening **India's stand at WTO**, where digital trade rules are still being negotiated.

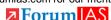
Broader Challenges to Digital Autonomy through FTAs

- 1. Rulemaking Entrenchment: Digital trade provisions create binding, often irreversible frameworks that hardwire global Big Tech-friendly norms. Unlike tariffs, digital rules once agreed cannot be altered without mutual consent, reducing policy flexibility.
- 2. Erosion of Strategic Policy Space: Sovereign choices such as mandating domestic data storage, requiring tech transfer, or creating public digital infrastructure like India Stack may get challenged as discriminatory. Similar pressures were seen in RCEP negotiations, from which India withdrew over digital trade disagreements.
- 3. Weak Negotiating Capacity: Lack of specialized digital trade negotiators or clear national digital industrialization strategy undermines India's ability to bargain strategically. In contrast, China's 'Great Firewall' and EU's GDPR exemplify assertive digital sovereignty policies backed by long-term planning.

Way Forward: A Digital Sovereignty Framework

- 1. **National Digital Sovereignty Policy**: Must define India's red lines on source code, data localization, and AI governance.
- 2. **Strengthen DPI and Indigenous Tech Ecosystems**: Continue investments in UPI, ONDC, DigiLocker, and BharatGPT.
- 3. **Expert-Driven Trade Negotiations**: Embed tech, legal, and cyber policy experts in FTA delegations.
- 4. **Push for Global South Digital Governance**: Collaborate with developing countries for **equitable digital rules** at WTO and G20.
- 5. **Strategic Use of Data**: Declare **critical public data as national assets**, limiting unrestricted foreign access.


Conclusion


Digital trade agreements must not undermine national autonomy. India needs strategic foresight, cohesive digital governance, and global leadership to protect its digital sovereignty while engaging in equitable international economic integration.

Despite their economic value, blue carbon ecosystems like mangroves are absent from policy frameworks. Examine the governance reforms needed to integrate natural capital into development planning for sustainable coastal resource management.

Introduction

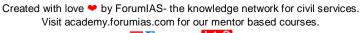
Mangroves, vital blue carbon ecosystems, provide climate resilience, livelihood support, and ecosystem services worth billions. Yet, they remain undervalued and underrepresented in mainstream development policy and financial accounting frameworks.

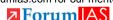
The Economic and Ecological Value of Mangroves

- 1. **Natural Capital Powerhouse**: Mangroves sequester up to 4 times more carbon than terrestrial forests, storing \sim 1,000 tonnes per hectare.
- 2. **Protection Services**: A 2020 World Bank report estimated that mangroves reduce annual flood damage costs by **over \$65 billion globally**.
- 3. **Indian Case Studies**: Sundarbans: Carbon sequestration valued at ₹462 million annually; total services valued at ₹664 billion. Pichavaram (Tamil Nadu): Ecosystem value estimated at ₹3,535 million.
- 4. **Livelihood Linkages**: Support ~4 million coastal fishers in India; serve as nurseries for shrimp and fish species.

Despite this, mangroves are often treated as 'wastelands' in land classification and excluded from cost-benefit analysis in infrastructure projects like ports, coastal highways, and tourism facilities.

Governance Gaps and Policy Blind Spots


- 1. Invisibility in Economic Planning: Mangroves are missing from national accounting systems like GDP and balance sheets, failing to reflect their true value in development decisions. Natural Capital is not integrated into the State Action Plans on Climate Change (SAPCCs) or Smart City Missions.
- 2. Regulatory Weaknesses: While India's Coastal Regulation Zone (CRZ) Notification, 2019 offers some protection, enforcement is weak. Fragmented jurisdiction between MoEFCC, State Forest Departments, Coastal Zone Authorities, and urban planning bodies leads to ineffective coordination.
- **3.** Lack of Incentives for Conservation: Current policies do not create financial incentives for community conservation or carbon sequestration services. Mangrove-linked eco-tourism and sustainable aquaculture remain underdeveloped.


Reforms Needed for Integrating Natural Capital

- 1. Mainstream Natural Capital Accounting (NCA): Adopt System of Environmental-Economic Accounting (SEEA) as recommended by the UN. Institutionalize Green GDP indicators and integrate ecological services into project appraisal frameworks of bodies like NITI Aayog and Ministry of Finance.
- 2. **Strengthen Legal Frameworks:** Amend the **Indian Forest Act** and **CRZ rules** to explicitly include mangroves as climate infrastructure. Mandate environmental impact assessments (EIA) to include valuation of ecosystem services and blue carbon stock.
- 3. Community-Based Governance Models: Empower Eco-Development Committees (EDCs) and Joint Forest Management Committees (JFMCs) to co-manage urban mangroves. Offer Payments for Ecosystem Services (PES) to communities engaging in restoration and monitoring.
- 4. Digital Mapping and Citizen Science: Use satellite and drone technologies with AI algorithms for real-time mangrove mapping and change detection. Encourage platforms like "Mangrove Mitras" to build citizen-led monitoring networks.
- 5. Dedicated Blue Carbon Missions: Launch a National Blue Carbon Mission under the National Action Plan on Climate Change (NAPCC), aligning with India's Long-Term Low Emissions Development Strategy submitted at COP27.

Global Best Practices

1. **Ecuador** provides mangrove concessions to communities for sustainable use and protection.

2. **Australia** integrates mangroves into its national accounting through the **Environmental-Economic Accounts Framework**.

India can draw from these models to create its own holistic approach to coastal sustainability.

Conclusion

Recognizing mangroves as economic and ecological infrastructure is vital for resilient coastal development. Governance reforms must institutionalize their value, empower communities, and embed natural capital in mainstream planning processes.

India's energy security demands fossil fuel conservation and regulatory reform. Examine how simplifying the energy regulatory system can be integrated with conservation efforts for a sustainable and secure energy future.

Introduction

India's energy security today transcends traditional concerns of fossil fuel access. It now demands conservation, renewable expansion, and systemic regulatory reform to ensure a resilient, affordable, and sustainable energy transition.

India's Two-Track Energy Pathway

India's energy future lies at the intersection of two trajectories:

- 1. **Fossil fuels**: Coal, oil, and gas still account for over **75% of energy consumption**.
- 2. **Renewables**: Solar, wind, hydro, and bio-energy collectively represent over **49% of installed electricity capacity** (234 GW, 2024). **Net Zero by 2070** and the target of **500 GW of renewable energy capacity by 2030** require conserving fossil fuels while accelerating renewable integration.

Conservation Efforts: Progress and Gaps

- 1. **Demand Efficiency:** India's **energy intensity (per unit of GDP)** declined by **33%** between 2005 and 2020 (MoEFCC, 2023). The **Perform Achieve and Trade (PAT)** scheme under the Bureau of Energy Efficiency has helped industries reduce emissions while saving over **92 million tonnes of oil equivalent (MTOE)**.
- **2. Fuel Diversification:** Import dependence reduced through increased procurement from countries like Russia, which now constitutes **35.1% of India's crude import basket** (up from 2.1% in 2021-22). Expansion of **ethanol blending** (12% in 2023 vs 1.5% in 2014) in petrol has saved foreign exchange and reduced carbon emissions.

Regulatory Hurdles in Renewable Expansion

- 1. While capacity has increased, the pace is slowing due to regulatory complexity, as per **Team Lease RegTech**, a 1 MW solar plant needs **over 100 approvals**, spanning **2,735 compliance obligations** across **35 departments**.
 - 2. **60%** of these still require physical submission and visits, raising transaction costs and investor fatigue. This maze stifles investments and delays projects, undermining the renewable energy sector's contribution to energy security.

Integrating Regulatory Reform with Conservation

- **1. Digitisation and One-Stop Clearance:** A unified **digital portal** for clearances, land records, and approvals akin to **'PM Gati Shakti'** in logistics can reduce duplication and ensure transparency.
- 2. **Standardisation and Decentralisation:** Uniform technical standards and safety protocols across states can streamline compliance. Empowering **State Renewable Energy Agencies (SREAs)** with decision-making autonomy will foster localized, context-driven solutions.
- 3. **Nodal Institutional Architecture:** Establishing a **Renewable Energy Regulatory Authority** with overarching jurisdiction and executive accountability can coordinate across land, power, and environment departments.
- **4. Reforming Distribution and Storage Systems:** Without synchronized development of **interstate transmission lines, battery storage, and pricing mechanisms**, renewable capacity remains underutilized. Spain's 2023 blackout due to grid mismatch is a cautionary tale.
- 5. Convergence with Climate Commitments: Streamlining regulations will help India meet its **Updated** NDC (2022) targets: Reduce emissions intensity by 45% (from 2005 levels) by 2030. Generate 50% of electricity from non-fossil sources by 2030.

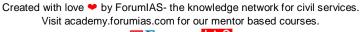
Political Will and Legacy Challenges

The fossil fuel sector is entrenched with **legacy interests**, but unlike geological constraints on hydrocarbons, regulatory reform is within government control. **Energy Atmanirbharta** demands political resolve to break silos, eliminate friction, and champion green growth.

Conclusion

Energy security and sustainability are two sides of the same coin. Simplifying energy regulation, when aligned with fossil fuel conservation, can catalyze India's transition to a clean, secure, and equitable energy future.

India's digital ambitions must align with the 'right to repair' and frugal innovation. Examine how integrating these principles can ensure inclusive, sustainable, and equitable digital governance and development.


Introduction


India's digital transformation is rapid, but to be truly inclusive and sustainable, it must embrace the "Right to Repair" and nurture grassroots, frugal innovation that sustains technological resilience and circularity.

The Right to Repair: A Global and Indian Context

- 1. Globally, the **Right to Repair** movement has gained momentum, especially in the **EU** and **United States**, mandating spare parts availability and repair documentation. India followed suit: **right to Repair Framework (2022)** by Department of Consumer Affairs, **National Portal (2023)** covering electronics, farm equipment, and automobiles and **repairability Index (2025)** proposed for mobile and white goods.
- 2. However, these efforts remain limited without systemic integration into digital governance, education, and skill policy.

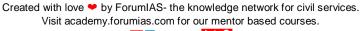
The Value of Frugal and Tacit Innovation

- 1. India's repair culture is deeply embedded in **jugaad** improvisation and reuse. Informal repairers, such as those in **Karol Bagh (Delhi)** or **Ritchie Street (Chennai)**, extend product lifecycles, making technology accessible and affordable.
- 2. This work reflects **tacit knowledge** passed down through mentorship and observation that conventional digital or AI systems struggle to codify.
- 3. Preserving this is essential to: **Reduce e-waste**: India generated **1.6 million tonnes** of e-waste in 2021–22, becoming the world's **third-largest producer**, **promote circular economy**: Aligning with **SDG 12** (Responsible Consumption and Production) and **bridge digital divide**: Repair access ensures continuity of work, education, and communication for low-income groups.

Challenges to Repair Ecosystems in India

- 1. **Design barriers**: Only 23% of smartphones in Asia are easily repairable (iFixit, 2023)
- 2. Policy blind spots: National skilling schemes like PMKVY overlook informal repair skills
- 3. **Exclusion from formal systems**: Repairers are left out of procurement, social security, and R&D
- 4. **Neglect of repair as knowledge**: Despite **NEP 2020** promoting experiential learning, tacit skills remain undocumented and unsupported

Towards Inclusive and Sustainable Digital Governance


- 1. **Embedding Repair in Policy and Infrastructure: MeitY** should mandate repairability in hardware procurement and AI development. **Design for "Unmaking"**: Devices must allow disassembly and modularity from inception. Extend **E-Waste (Management) Rules, 2022** to prioritize repair before recycling
- 2. **Formalising Informal Repair Work:** Use **e-Shram** to register and support informal repair workers. Provide **micro-certifications** that value diagnostic intuition, not just manual precision. Encourage platforms like **Mangrove Mitras**-like "Repair Mitras" for citizen engagement.
- 3. **Leveraging AI and DPI for Repair Justice:** Use **Large Language Models (LLMs)** to document repair narratives. Create community-led **digital repair libraries** with step-by-step troubleshooting guides. Align with **Digital Public Infrastructure (DPI)** efforts by integrating repair services into platforms like **UMANG** or **MyGov.**
- 4. **Enabling Economic and Environmental Equity:** Recognise repairers as **green workers** under **Mission LiFE.** Link repair to climate action, circular economy, and green job creation. Promote urban circular hubs and localised maker labs for repair and reuse.

Way Forward

Sustainability must not be top-down but co-created with grassroots actors. Formal R&D and informal creativity must coexist. Recognising repairers not as outdated relics, but as **frontline digital stewards**, is critical.

Conclusion

By integrating the right to repair and frugal innovation into digital policy, India can create an equitable and sustainable technological ecosystem that values people, preserves resources, and bridges the digital divide.

Despite distinct approaches, the philosophies of Tagore and Shankaracharya share a core message of unity. Examine how this synthesis of diverse paths is a salient feature of Indian intellectual and cultural tradition.

Introduction

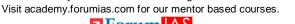
Indian philosophy has historically embraced multiplicity, yet found oneness at its core. The distinct paths of Rabindranath Tagore and Adi Shankaracharya epitomise this inclusive vision rooted in unity and harmony.

Two Masters, One Truth

- Rabindranath Tagore (1861-1941), a poet, mystic, and humanist, viewed the universe as an 1. expression of divine joy. His **Brahmasangeet** and works like Gitanjali reflected the inner spiritual experience of connecting to the infinite through nature, music, and love.
- In contrast, **Adi Shankaracharya** (8th century CE), through **Advaita Vedant**a, asserted that Brahman (the ultimate reality) alone is real and the world is Maya (illusion). His approach was deeply rational, based on inana marga (path of knowledge), rigorous logic, and scriptural analysis.
- Despite the divergence poetic devotion versus metaphysical reasoning both converge on a single truth: **unity of the self with the cosmos**, and liberation from ego and duality.

Unity in Diversity: The Indian Cultural Ethos

- The juxtaposition of Shankaracharya and Tagore highlights a key Indian civilisational trait: 1. samanvaya (harmonisation). Indian tradition has long celebrated the coexistence of multiple spiritual paths, be it: Bhakti (devotion): Seen in Tagore's lyrical surrender to the divine, Jnana (knowledge): Embodied by Shankaracharya's Advaita or Karma (action) and Raja Yoga (meditation): As elaborated in the Bhagavad Gita.
- This integrative tradition is not just philosophical but deeply **cultural**. The Rigyeda's declaration Ekam sat viprah bahudha vadanti ("Truth is one, sages call it by various names") — forms the foundation of India's pluralistic worldview.


The Role of Inner Realisation

Both thinkers transcend ritualistic religiosity.

- 1. Tagore rejected dogma in favors of personal communion with the divine, famously saying: "Deliverance is not for me in renunciation. I feel the embrace of freedom in a thousand bonds of delight."
- 2. Shankaracharya taught neti-neti (not this, not this), guiding the seeker inward to the real Self, Atman, which is not confined by name or form.
- 3. Their teachings underline that **self-realization**, not external conformity, is the goal a timeless idea that resonates with Gandhi's inner swarai, Kabir's mysticism, and even modern mindfulness movements.

Relevance to Contemporary India

- In an era of rising sectarianism and technological alienation, their shared message of spiritual unity and human dignity is deeply relevant.
 - 2. Tagore's **Visva-Bharati** university, rooted in the idea of global oneness, promoted **dialogue between** East and West.

Created with love ♥ by ForumIAS- the knowledge network for civil services.

- 3. Shankaracharya, through the establishment of four mathas (monastic centres), unified India spiritually and geographically.
- Both show that diversity of thought, when rooted in shared oneness, strengthens national and individual identity — an idea enshrined in India's Constitution and reflected in Sabka Saath, Sabka Vikas.

Synthesis as a Legacy of Indian Thought

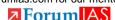
- This ability to hold **seeming contradictions together** of logic and love, intellect and emotion, reason and faith — defines the **Indian knowledge system**: **Charvaka materialism** coexisted with **Buddhist** compassion, Tantra found space alongside Vedic orthodoxy, Sufi and Bhakti poets celebrated God in human form and formless essence alike.
- 2. Such **synthesis** is not dilution but **deep integration**, affirming India's **spiritual democracy**.

Conclusion

Tagore and Shankaracharya reflect the Indian genius for unity through diversity. Their convergence reminds us that varied paths can lead to the same truth — the indivisible oneness of existence.

India's battery waste management lacks effective Extended Producer Responsibility (EPR) floor pricing. Examine how implementing fair EPR can bridge this gap, promoting circular economy principles and environmental sustainability.


Introduction


With India's push towards decarbonization and electrification, lithium-ion battery usage is surging. Yet, without robust Extended Producer Responsibility (EPR) pricing, battery waste risks becoming a major environmental and economic hazard.

- 1. The Growing Challenge of Battery Waste in India: India's lithium battery demand is projected to rise from 4 GWh in 2023 to 139 GWh by 2035 due to electric vehicles (EVs) and renewable energy adoption. However, battery waste is rising rapidly too, in 2022, lithium batteries contributed 700,000 tonnes to India's 1.6 million tonnes of e-waste. Improper disposal leads to soil and water contamination, fires, and air pollution due to hazardous components like lithium, cobalt, and nickel.
- 2. Battery Waste Management Rules (2022) and the EPR Mandate: The Battery Waste Management Rules (BWMR) introduced EPR, making producers responsible for collection and recycling. Key components of EPR: Collection targets for producers. EPR certificates issued by recyclers for verification. Use of EPR floor pricing to ensure recyclers are fairly compensated.
- 3. Why Fair EPR Floor Pricing Matter?

The current EPR floor price under consideration is unviably low—less than one-fourth of the UK's ₹600/kg for EV batteries—even after adjusting for purchasing power parity. Consequences of inadequate floor pricing: Disincentivises legitimate recyclers who incur high costs for safe dismantling, labour, and tech. Encourages informal or fraudulent recycling, where waste is improperly dumped, leading to health and ecological risks. Weakens material recovery—India could lose over \$1 billion in foreign exchange by 2030 due to poor recycling of rare materials like cobalt and lithium.

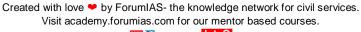
4. Promoting Circular Economy Through Strong EPR: A fair EPR pricing mechanism can: **Close the loop** in the battery lifecycle. Ensure **economic viability** of formal recycling enterprises. Reduce **import dependence**

Created with love ♥ by ForumIAS- the knowledge network for civil services.

on critical minerals. Align with **Mission LiFE** (Lifestyle for Environment) and **SDG 12** (Responsible Consumption and Production).

- **5. Global Best Practices: EU's Battery Regulation (2023)** mandates battery design for recyclability and minimum recycled content. **South Korea** integrates informal recyclers into formal channels via training and financial support.
- **6. Strengthening Enforcement and Integrating Informal Sector: Digitisation of EPR tracking** and **third-party audits** can prevent fake certificate issuance. **Penalties for non-compliance** must be effectively enforced. Integrate **informal recyclers** (who currently dominate e-waste) via **training, certification**, and **financial incentives**. Example: Swachh Bharat Mission successfully included informal waste-pickers into municipal frameworks. Promote **public-private partnerships (PPPs)** to build localised battery recycling hubs.
- **7. Addressing Cost Concerns:** Raising EPR prices won't burden consumers: **Global lithium and cobalt prices have fallen**, but cost reductions haven't reached end-users. Original Equipment Manufacturers (OEMs) have the margin to absorb increased recycling costs, especially large multinational producers.

Conclusion


A robust EPR floor pricing mechanism is crucial for effective battery waste management. It can power India's transition to a circular economy while ensuring environmental safety, resource security, and green growth.

India-US tech cooperation is shifting towards strategic dominance, not shared values. Critically analyze the challenges this techno-capitalism poses to India's technological sovereignty, economic autonomy, and innovation ecosystem.

Introduction

India-US tech collaboration, once rooted in shared scientific values and mutual development goals, now reflects a strategic techno-capitalist shift, raising concerns over India's autonomy, innovation landscape, and digital sovereignty.

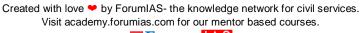
- 1. From Scientific Internationalism to Strategic Instrumentalism The 1975 SITE project between ISRO and NASA symbolised "scientific internationalism," where technology was seen as a tool for shared human progress. However, current US-India tech relations—exemplified by the Initiative on Critical and Emerging Technologies (ICET, 2023)—increasingly prioritise strategic dominance, especially in AI, semiconductors, quantum tech, and space. While these partnerships offer India access to cutting-edge systems, they often come with geopolitical strings, limiting India's strategic autonomy.
- 2. **Techno-Capitalism and the Rise of the 'Tech Broligarchy':** The Trump administration's technocapitalist vision represents a deregulatory, post-liberal model where **Silicon Valley elites and Washington elites collaborate**—not for public good, but for geopolitical supremacy. Policies like the **2025 AI Deregulation Framework** and the **GENIUS Act for stablecoins** reflect a shift from governance to enablement, aligning state power with corporate ambition. For India, this deepens the asymmetry, as Indian tech firms struggle to match the scale, capital, and lobbying influence of US Big Tech.
- 3. **Erosion of Technological Sovereignty:** India's digital public infrastructure—like Aadhaar, UPI, and ONDC—represents a model of **"tech for public good."** However, growing dependence on American cloud services, proprietary AI models, and platforms erodes data sovereignty. For instance, **over 75% of India's cloud market is controlled by US firms** (AWS, Microsoft, Google), and there's **no Indian equivalent of foundational LLMs** or semiconductor fabs. India's **lack of control over digital standards** exposes it to future coercion or lock-in dependencies.

- 4. **Threat to Economic Autonomy and Tech Workforce:** Trump-era policies like H-1B restrictions and AI-led automation challenge India's service-export-driven economy. According to **NASSCOM (2024)**, over **40% of Indian IT jobs** face automation risk due to GenAI, threatening a sector that contributes **8% of India's GDP**. With US companies focusing on reshoring and domestic innovation, India's tech labour arbitrage model is increasingly fragile.
- 5. Innovation Ecosystem Under Pressure: India's Gross Expenditure on R&D (GERD) is stuck at 0.7% of GDP, compared to 3.4% in the US and 2.4% in China. While the US incentivises private innovation through venture capital and strategic defence contracts, India lacks comparable financial ecosystems and IP regimes. The dominance of global Big Tech also sidelines Indian startups—who are often forced to depend on US venture capital and exit via foreign listings, diluting domestic value creation.

Way Forward: Guarding Strategic Interests

India must **build indigenous capabilities in AI, chips, and quantum**, through policies like the **India Semiconductor Mission**, **Digital India Act**, and **Start-up India 2.0**. Collaborations like **India-France AI partnership** and the **Digital Public Infrastructure model shared with G20** offer alternatives to US technohegemony. A **Data Protection Board**, strategic tech alliances beyond the US (e.g. Quad Tech Network, EU Digital Partnerships), and enhanced public R&D funding are vital to preserving India's digital autonomy.

Conclusion


India must move from passive recipient to proactive architect in global tech geopolitics—balancing strategic cooperation with technological self-reliance, economic resilience, and an innovation model rooted in democratic values.

India's data-driven welfare state may compromise democratic norms and political accountability. Critically analyze the governance challenges and ethical dilemmas of using technology to deliver social welfare at scale.

Introduction

India's digital welfare state promises scale and efficiency, but risks bypassing core democratic norms, citizen agency, and political accountability. Algorithmic governance, if unchecked, may dehumanise welfare delivery and weaken constitutional safeguards.

- 1. From Rights-Based Welfare to Technocratic Targeting: India's transition from a rights-based welfare model to a technocratic calculus is marked by the dominance of Direct Benefit Transfers (DBT), Aadhaar, and algorithmic targeting. With 1,206 schemes integrated into DBT and over a billion Aadhaar enrollments, the focus has shifted from deliberating who needs support and why to how to eliminate leakage. This shift, while improving coverage and reducing ghost beneficiaries, risks undermining contextual discretion and lived realities, especially for marginalised communities.
- **2. Loss of Political Accountability through Algorithmic Insulation:** Digital systems such as the **Centralised Public Grievance Redress and Monitoring System (CPGRAMS)** flatten federal hierarchies into ticket-based systems. While lakhs of complaints were "disposed of" in 2022–24, responsibility remains diffused. **Algorithmic insulation** renders citizens visible as data but obscures the pathways of accountability echoing Justice D.Y. Chandrachud's 2018 Aadhaar dissent on "datafication without empathy". This detachment dilutes the **democratic ethic of responsiveness** and political answerability.
- **3. Ethical Dilemma of Computable Suffering:** Technocratic governance converts citizen suffering into computable metrics who is visible, who can complain, and whose deprivation is measurable. Drawing from **Giorgio Agamben's "homo sacer"** and **Jacques Rancière's critique of democracy**, the danger lies in stripping welfare of **deliberation and dignity**, reducing the citizen to a passive, auditable beneficiary. For

instance, **e-Shram** and **PM-KISAN** operate through standardised eligibility filters with minimal room for appeals or human error correction.

- **4. Federal Disempowerment and the Fragility of Uniform Systems:** Hyper-centralised platforms often **undermine state-level discretion**, ignoring region-specific welfare needs. Taleb's theory of **"fragile, hyperintegrated systems"** becomes relevant here: overly standardised digital regimes can **fail catastrophically under local stress**, as seen in DBT-linked ration denials in **Jharkhand's starvation deaths (2017–18)**. States must have the autonomy to adapt systems to their socio-economic realities.
- **5. Declining Welfare Commitment Amid Digital Expansion:** Despite the data-driven expansion, India's **social sector spending has declined to 17% of total expenditure in 2024–25**, from a decade average of 21%. Crucial schemes for minorities, nutrition, and social security have seen disproportionate cuts. This points to a **hollowing out of welfare intent**, where digital delivery replaces deeper social investment.
- **6. Institutional Erosion: The RTI Crisis:** Political accountability is further eroded by the **dysfunctional Right to Information (RTI)** architecture. As of June 2024, **over 4 lakh RTI appeals** remain pending across **29 commissions**, with **8 Chief posts vacant** (CIC Annual Report). Digital opacity in welfare systems combined with weak transparency mechanisms severely hampers **citizen oversight**.

The Need for Democratic Antifragility

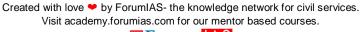
Instead of a brittle, technocratic regime, India must aim for **democratic antifragility** — systems that become more accountable under stress. This includes:

- Statutory bias audits and appeals mechanisms (UN digital governance principles),
- Community-driven impact audits (UN Rapporteur on Extreme Poverty),
- **Platform cooperatives** (like Kerala's Kudumbashree),
- Offline fallback systems for grievance redress.

Conclusion

India's digital welfare must evolve from mere efficiency to democratic inclusion. True transformation lies in restoring citizen agency, embedding safeguards, and nurturing participatory systems that complement—not replace—constitutional values.

Biochar offers multi-faceted benefits for sustainable development and carbon sequestration. Critically analyze the challenges hindering its large-scale adoption and suggest policy measures to enable its market integration.

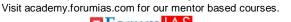

Introduction

Biochar, a carbon-rich byproduct of biomass pyrolysis, presents a transformative solution for climate mitigation, soil health, and energy generation. Yet, systemic, technical, and policy challenges impede its large-scale deployment.

The Multifaceted Promise of Biochar

Biochar, produced by heating organic material (like crop residue and municipal waste) in limited oxygen, offers several sustainable development benefits:

1. **Carbon Sequestration**: Stable carbon in biochar can remain locked in soils for 100–1,000 years, offering a negative emissions solution.


- Agricultural Productivity: Improves soil water retention, enhances microbial activity, and increases crop yields by 10–25%.
- Fertiliser Efficiency: Reduces fertiliser need by 10-20%, lowering both costs and nitrous oxide 3. emissions.
- Renewable Energy: Co-products like syngas and bio-oil can replace fossil fuels—potentially replacing 0.7 million tonnes of coal and 8% of diesel use in India.
- Waste Management: Offers a clean alternative to burning 600+ million tonnes of agricultural residue and 60 million tonnes of solid waste annually.
- Construction: Biochar-infused concrete can improve strength, heat resistance by 20%, and sequester 6. up to 115 kg CO_2 per cubic metre.
- Wastewater Treatment: Can clean 200-500 litres per kg of biochar, offering solutions to India's untreated wastewater crisis.

Challenges Hindering Biochar's Large-Scale Adoption

- Market and Economic Barriers: Absence of a formal market for biochar products. Lack of standardisation in feedstock quality, carbon content, and application methods. Low investor confidence due to **uncertain returns** and absence of mature **business models**.
- Regulatory and Policy Gaps: Biochar is underrepresented in carbon credit markets due to poor MRV (Monitoring, Reporting, Verification) frameworks. The Carbon Credit Trading Scheme (CCTS) under India's upcoming carbon market does not yet clearly recognise biochar as a verifiable carbon removal pathway.
- Technical and Awareness Limitations: Limited R&D and region-specific innovations to suit diverse 3. agro-climatic conditions. Low farmer awareness, especially among smallholders, of biochar's long-term benefits. Technical inefficiencies in decentralised pyrolysis technologies.
- **Institutional Fragmentation:** Lack of cross-sectoral coordination between agriculture, environment, energy, and waste management ministries. Village-level implementation is hindered by poor integration with rural development schemes.

Policy Measures for Market Integration and Scale-Up

- Institutional Integration and Incentivization: Integrate biochar into national policies: National Mission on Sustainable Agriculture, State Action Plans on Climate Change, and the National Bio-Energy Mission. Offer financial incentives such as production-linked subsidies or tax rebates for decentralized pyrolysis units. Recognise biochar as a legitimate instrument under carbon trading frameworks to monetize carbon sequestration.
- 2. Infrastructure and R&D Investments: Develop regional feedstock guidelines and decentralized processing infrastructure using schemes like PM-KUSUM and the Waste-to-Energy Programme. Promote public-private partnerships (PPPs) for biochar R&D, especially for use in **construction materials** and **carbon** capture technologies.
- **Awareness and Capacity Building:** Launch extension programs to educate farmers on soil and income benefits. Train rural entrepreneurs in biochar production, creating up to 5.2 lakh rural jobs, fostering inclusive climate action.

Standardization and Certification: Establish national standards for biochar quality, safety, and carbon content under the **Bureau of Indian Standards (BIS)**. Create independent third-party MRV agencies to enable carbon credit eligibility.

Conclusion

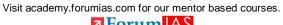
Biochar holds immense potential as a circular economy enabler and climate tool. Unlocking its value requires robust policy alignment, institutional support, market creation, and inclusive rural participation in a carbonconscious future.

China's actions against India are a calibrated strategy for its own internal interests. Examine the lessons India can learn to counter such challenges and safeguard its core strategic and economic interests.

Introduction

China's assertive economic and geopolitical posturing against India reflects its need to preserve internal stability and global dominance. India must decode this strategy to fortify its own national and economic resilience.

Understanding China's Calibrated Strategy


China's actions against India — from the withdrawal of engineers in key projects to restrictions on critical raw material exports — are not isolated incidents but elements of a **deliberate geo-economic strategy**. These actions aim to:

- 1. Arrest India's rise as a global manufacturing competitor, especially in high-value sectors like electronics and EVs.
- 2. Prevent technology and know-how transfer, crucial to India's 'Make in India' and 'Atmanirbhar Bharat' goals.
- 3. **Preserve export-driven growth** vital for Beijing, especially as domestic consumption falters due to an ageing population and a persistent property crisis.
- 4. Stabilise internal socio-political order, by ensuring sustained revenues to finance security and social welfare amidst mounting economic pressures.

China's Internal Drivers of External Aggression

- 1. **Demographic crisis**: China's working-age population peaked in 2015; it is expected to shrink by 400 million by 2100 (UN data).
- 2. Property and debt crisis: Real estate accounts for 30% of China's GDP; defaults by firms like Evergrande signal systemic fragility.
- 3. Overcapacity in manufacturing: With falling domestic demand, China increasingly dumps cheap **goods** abroad (e.g., BYD's EV pricing), threatening competitors.
- 4. **Dependence on exports**: China's trade surplus neared \$900 billion in 2023, a lifeline for maintaining military spending and domestic security.

These pressures make any economic challenger like India a threat — prompting subtle acts of economic coercion and tech-denial strategies.

Lessons and Policy Pathways for India

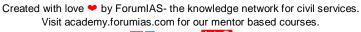
- 1. **Strengthen Indigenous Capabilities:** Accelerate **PLI schemes** in electronics, semiconductors, solar PVs, and EVs. Develop local capacity for **critical minerals refining**—India has lithium reserves in J&K and Karnataka. Invest in chip-making: Micron's ₹22,500 crore Gujarat plant is a good start, but broader semiconductor ecosystem development is essential.
- 2. **Reduce Strategic Dependencies:** Diversify import sources of rare earths and minerals through tie-ups with **Australia**, **the U.S.**, **and Africa**. Localise production of capital machinery via MSME cluster support and **Technology Upgradation Fund**.
- 3. **Institutional and Governance Reform:** Streamline clearances via **single-window systems**, reform land and labour laws to attract large-scale investment. Build **logistics and power infrastructure**, critical for manufacturing competitiveness.
- 4. **Create a Strategic Buffer Against Chinese Tactics:** Build a national **Technology Transfer Protection Framework**, to safeguard against brain-drain or coercive technology withdrawal. Leverage India's **diplomatic capital**: Promote friend-shoring with Japan, South Korea, EU nations to build supply chain resilience. Strengthen **Quad** and **IPEF** engagements to counterbalance Chinese dominance in Indo-Pacific trade and tech chains.
- 5. **Strategic Communication and Global Positioning:** Project India as a **stable alternative** to China: political stability, democratic governance, and youth-driven workforce. Guard against complacency **recent U.S. tariff hikes** on Indian exports underscore the fragility of overreliance on any single partner.

Conclusion

China's economic coercion underscores the need for India to build self-reliance, strategic autonomy, and resilient partnerships. A calibrated, long-term strategy must anchor India's rise in a turbulent multipolar world.

Stagnant wages and disproportionate growth challenge India's economic balance. Critically analyze how these economic trends impact social equity, household well-being, and the goal of an inclusive society.

Introduction


Economic growth in India has touched impressive figures — 7.6% GDP growth in FY2024 — but when the benefits are unevenly distributed and real wages stagnate, macroeconomic stability risks masking deep-rooted social and economic disparities.

The Wage-Inflation Disconnect

- 1. **Real wage stagnation**: While nominal wages have grown e.g., 9.2% in 2023 real wage growth was only 2.5% due to inflation erosion. In 2020, real wages even turned negative (-0.4%).
- 2. **Food inflation impact**: Persistent high food inflation (CFPI at 10.87% in Oct 2024) disproportionately affects lower-income groups, as food forms ~50% of their consumption basket.
- 3. **Household strain**: High inflation in essentials forces families to cut back on nutrition, education, and healthcare, undermining human capital development.

Inequality and the K-Shaped Recovery

1. **Wealth concentration**: Oxfam's 2023 report found the richest 1% in India control over 40% of total wealth, while the bottom 50% own only 3%.

- 2. **K-shaped recovery post-COVID-19**: Urban, formal sector professionals, tech, and financial sectors recovered rapidly. Informal workers, rural labor, and MSMEs lagged behind.
- 3. **Gini coefficient**: Declined in formal taxable incomes (0.489 in AY13 to 0.402 in AY23) but excludes vast informal sector inequalities.

Social Equity Implications

- 1. **Education & health access**: Stagnant wages reduce capacity to afford quality education and healthcare, reinforcing intergenerational poverty.
- 2. **Social mobility**: OECD data shows upward mobility in India is limited it could take up to seven generations for the poor to reach mean income levels.
- 3. **Social cohesion risks**: Perceived unfairness in growth distribution can fuel unrest, as seen in protests over unemployment and price rise.

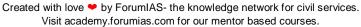
Household Well-being

- 1. **Erosion of savings**: NSSO data shows household savings rate has declined from ~23% of GDP in 2012 to ~19% in recent years.
- 2. **Debt dependence**: Rising consumer credit dependency for basic needs increases vulnerability to financial shocks.
- 3. **Consumption slowdown**: With wages stagnant, discretionary spending drops, slowing overall demand a risk to sustained economic growth.

Fiscal Constraints and Policy Space

- 1. **High public debt**: ~81% of GDP, limiting capacity for expansive social spending.
- 2. **Fiscal deficit**: Projected to decline to 4.4% in FY26, but consolidation could reduce welfare expenditure unless revenues rise.
- 3. **Crowding out effect**: Heavy government borrowing may limit private investment, affecting job creation.

Policy Lessons & Correctives


- 1. **Boost real wages**: Strengthen collective bargaining and minimum wage enforcement. Invest in skill development to improve productivity-linked pay.
- 2. **Address inflation volatility**: Strengthen agricultural supply chains and storage to stabilise food prices.
- 3. **Redistributive measures**: Expand targeted social transfers and tax progressivity.
- 4. **Support MSMEs and informal sector**: Credit access, digitization, and formalization incentives to ensure inclusive growth.

Conclusion

India's growth story risks fragility if stagnant wages and inequality persist. Inclusive prosperity demands policies that raise real incomes, broaden opportunity, and protect household well-being — not just headline GDP triumphs.

The improving India-Philippines relations underscore shared strategic interests in the Indo-Pacific. Examine how this bilateral cooperation can enhance regional stability and India's Act East policy objectives.

Introduction

India-Philippines ties, elevated to a Strategic Partnership in August 2025, reflect converging strategic, economic, and security interests in the Indo-Pacific, complementing India's Act East Policy and ASEAN centrality principles.

Strategic Convergence in the Indo-Pacific

- 1. **Rules-based order**: Both countries support a free, open, and inclusive Indo-Pacific anchored in UNCLOS (1982) and peaceful dispute resolution, including recognition of the **2016 Arbitral Award** on the South China Sea.
- 2. **ASEAN centrality**: Reinforces multilateral diplomacy, aligning with India's vision of engaging Southeast Asia as a core partner in regional stability.

Maritime Security and Defence Cooperation

- 1. **Institutional mechanisms**: Strengthened through the Joint Defence Cooperation Committee and Strategic Dialogue.
- 2. **Capacity building**: Joint training, shipbuilding, and coastal surveillance enhance maritime domain awareness.
- 3. **Counterbalance to China**: Collaboration provides a strategic hedge against coercive actions in contested waters, supporting freedom of navigation.

Economic Synergy and Connectivity

- 1. **Bilateral trade**: Stood at USD 3.3 billion in 2024–25; planned Preferential Trade Agreement will further integrate supply chains.
- 2. **Sectoral cooperation**: Renewable energy, critical minerals, and digital technologies reduce dependence on single-source supply chains, a key Indo-Pacific economic resilience goal.
- 3. **Connectivity initiatives**: Enhanced air, maritime, and digital links support India's "Act East" physical and digital corridor ambitions.

Science, Technology, and Innovation Diplomacy

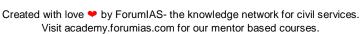
- Joint research: Space, nuclear energy, and agriculture collaborations improve technological selfreliance.
- 2. **Critical minerals**: Access to Philippine reserves can aid India's EV and semiconductor goals, contributing to strategic autonomy in the Indo-Pacific tech race.

Cultural and People-to-People Diplomacy

- 1. **Historical linkages**: Rooted in the 1952 Treaty of Friendship and shared Asian identity.
- 2. **Soft power projection**: Educational initiatives like ITEC, cultural exchanges, and tourism promote goodwill and public diplomacy, critical for Act East outreach.

Multilateral and Global Governance Coordination

- 1. Climate change & sustainability: Cooperation in the International Solar Alliance aligns with global green transition efforts.
- 2. **Voice of the Global South**: Joint advocacy for equitable multilateral systems enhances the bargaining position of developing nations in global forums.
- 3. **Counter-terrorism collaboration**: Supports regional stability by tackling transnational threats.


Contribution to India's Act East Policy Goals

- 1. **Geopolitical footprint**: Expands India's engagement beyond its immediate neighborhood to the Western Pacific.
- 2. **Balancing regional powers**: Strengthens India's role as a security provider in Southeast Asia.
- 3. **Trade diversification**: Opens alternative markets and reduces overdependence on traditional partners.

Conclusion

The India–Philippines Strategic Partnership advances both nations' security, economic, and diplomatic interests, reinforcing regional stability while giving India's Act East Policy greater strategic depth and operational relevance.

