“CHIME telescope” detects numerous “Fast Radio Bursts”

ForumIAS announcing GS Foundation Program for UPSC CSE 2025-26 from 26th June. Click Here for more information.


What is the news?

Scientists from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) have detected 535 Fast Radio Bursts (FRB). It is the largest collection of FRB till date.

CHIME telescope (Source: Wiki)

  • They have detected this in collaboration with India’s Tata Institute for Fundamental Research (TIFR) and the National Centre for Radio Astrophysics (NCRA).
Also read: Thirty Meter telescope (TMT)

 

What are Fast Radio Bursts (FRBs)?

  • FRBs are bright bursts of radio waves (radio waves can be produced by astronomical objects with changing magnetic fields) that blaze for a few milliseconds before vanishing without a trace.
  • They are spotted in various and distant parts of the universe as well as in our own galaxy. However, their origins are still unknown, and their appearance is highly unpredictable.
  • The first FRB was spotted in 2007. Since then, scientists had only caught sight of around 140 bursts in their telescopes.
  • Source: Magnetars could be the source of some fast radio bursts(FRBs).

What is a Magnetar?

  • Magnetar: It is a type of neutron star. The magnetic field of such a star is very powerful. It can be over a thousand times stronger than a typical neutron star’s magnetic field.
  • Neutron: The formation of a neutron star occurs when the core of a massive star undergoes gravitational collapse at the end of its life.
Fast Radio Bursts (FRBs) discovered by CHIME Telescope
  • The CHIME telescope has detected 535 new fast radio bursts in its first year of operation between 2018 and 2019.
  • Location of FRBs: When the scientists mapped their locations, they found the FRBs were evenly distributed in space, seeming to arise from any and all parts of the sky.
  • Types: The newly discovered FRBs appear to fall into two distinct classes: those that repeat and those that don’t repeat.
    • The repeater FRBs looked different. Each burst lasted slightly longer and emitted more focused radio frequencies than bursts from non-repeating FRBs.
    • These differences strongly suggest that emission from repeaters and non-repeaters is generated either by different physical mechanisms or in different astrophysical environments.
  • Significance: Scientists hope that the CHIME telescope will soon help them discover more properties of fast radio bursts and know more about the possible sources they are coming from.
CHIME Telescope
  • Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a radio telescope designed to answer major questions in astrophysics and cosmology.
  • The telescope is a partnership between the University of British Columbia, McGill University, the University of Toronto and the Canadian National Research Council’s Dominion Radio Astrophysical Observatory.
  • Working of CHIME Telescope:
    • The CHIME telescope functions a bit differently from others used for radio astronomy. Most radio astronomy is done by rotating a large dish to focus light from different parts of the sky.
    • On the other hand, the CHIME telescope comprises four massive parabolic radio antennas. It has no moving parts, and it receives radio signals each day from half of the sky as the Earth rotates.
    • The telescope has a powerful digital signaling processor that works at about seven terabits per second – equivalent to a few percent of the world’s internet traffic.
    • This digital signal processor reconstructs and looks in thousands of directions simultaneously. That’s what helps it to detect FRBs a thousand times more often than a traditional telescope.
  • Location: The telescope is located at Dominion Radio Astrophysical Observatory in British Columbia, Canada.

Source: The Hindu

Print Friendly and PDF
Blog
Academy
Community